1	(a	(i)	decrease down group;	[1]		
		(ii)	caesium / francium;	[1]		
	((iii)	$2Rb + 2H_2O \rightarrow 2RbOH + H_2$ not balanced = [1]	[2]		
	(b)	(Li [†]	[1]		
		(ii)	N^3	[1]		
	((iii)	regular arrangement of ions / particles / positive and negative ions alternate; not: atoms	[1]		
		(iv)	3:1; ratio to balance charges / reason in terms of valency;	[1] [1]		
			[Tota	l: 9]		
2	(a	2 +	8 + 11 + 2	[1]		
(b) hard; strong / high tensile strength; high mp / bp / high fixed points; high density;						
		two	<pre>three properties = [2] two properties = [1] not: properties of all metals e.g. good conductor, lustre etc. or form coloured compounds</pre>			
	(c)	catalyst would not affect yield / change position of equilibrium / affects both sides equally (higher) temperature would reduce yield / increase in temperature would favour back		[1]		
			higher) temperature would reduce yield / increase in temperature would favour back eaction;			
	(d)	(i)	V ³⁺ is oxidant;	[1]		
		(ii)	V ³⁺ to V ⁴⁺ ; increase in oxidation number / electron loss;	[1] [1]		
			[Tota	ıl: 8]		

	(h)	Br / bromine / Br ₂ ;	[1] otal: 8]
	(g)	Cu / copper;	[1]
	(f)	Se / selenium;	[1]
	(e)	Br / bromine / Br ₂ ;	[1]
	(d)	Ni / nickel or Cr / chromium;	[1]
	(c)	Ge / germanium;	[1]
	(b)	Kr / krypton;	[1]
4	(a)	Ca / calcium;	[1]
	(d)	1 non-bonding pair on each nitrogen atom; 6 electrons between nitrogen atoms;	[1] [1]
	(c)	weak intermolecular (or between molecules) forces / Van der Waals forces be molecules / low amount of energy required to break bonds between molecules; strong bonds don't break / covalent bonds don't break / (unnamed) bonds within mole between atoms don't break;	[1]
	(b)	atomic number / proton number / number of protons (in one atom);	[1]
3	(a)	neon has full outer shell / energy level / valency shell / octet / 8 (electrons) in outer neon does not need to lose or gain electrons; fluorine atoms have 7 electrons / needs 1 to fill / has incomplete shell / forms bone other fluorine atoms / fluorine (atoms) form covalent bonds / shares electrons;	[1]

5	(a)	(i)	zinc mixed with an element(s) or metal(s) or non-metal;	[1]
		(ii)	galvanising / baths / coating steel (i.e. description of galvanising) / roofing / sacrificial protection / protection from rusting / electroplating / zinc plating / batteries;	[1]
		(iii)	(lattice) positive ions / cations / metal ions / sea of electrons / delocalised or free or mobile or moving electrons; attraction between positive ions and electrons; the layers (of ions) or particles can slide or slip or shift past each other;	[1] [1] [1]
		(iv)	different atom / ion / particle of different size; prevents (layers / atoms / ions / particles / molecules) moving / slipping / sliding / shifting;	[1] [1]
	(b)	(i)	heat with carbon or coke or carbon monoxide;	[1]
	(D)	(1)	Heat with Carbon of Coke of Carbon monoxide,	ניו
		(ii)	$ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$ [1] for correct reactants [1] for correct products	[2]
		` '	zinc (not: ions) more reactive than silver and lead; zinc displaces both metals / silver and lead produced / ions become atoms / zinc	[1]
			reduces silver ions and lead ions; (silver and lead) can be removed by filtering / centrifugation / decanting;	[1] [1]
			an ionic equation; i.e. Zn + 2 Ag ⁺ → Zn ²⁺ + 2Ag or Zn + Pb ²⁺ → Zn ²⁺ + Pb allow: any two correct half equations	[1]
			cathode labelled carbon / zinc / platinum; zinc deposited at cathode; oxygen formed (at anode);	[1] [1] [1]
			(electrolyte becomes) sulfuric acid / remaining solution contains H ⁺ and SO ₄ ² ;	[1

[Total: 18]

6	(a	(i)	photosynthesis or a photochemical reaction not an example, question requires a process not devices which convert light into electricity	[1]
		(ii)	cell accept battery not generator	[1]
	(b)	(i)	correct formula	[1]
			cond following marks conditional on correct formula If covalent mark 1 only correct charges 6x and 2o around anion do NOT penalise for incorrect coding ignore electrons around potassium	[1] [1]
		(ii)	correct formula	[1]
			If ionic mark 1 only cond 2 bp and 2 nbp around selenium 1 bp and 3 nbp around both chlorine atoms	[1] [1]
		(iii)	the ionic compound higher melting point / boiling point / less volatile conducts when molten or aqueous, covalent compound does not is soluble in water, covalent is not / ionic insoluble in organic solvents, covale in organic solvents harder any two note there has to be comparison between the ionic compound and the compound not density	[2]
	(c)	bas	se	[1]
		acc	t alkali cepts a proton cepts hydrogen ion / H ⁺ only [1] oton and H ⁺ [2]	[2]
7	(i	i) R	b / Sr	[1]
	(ii	i) I		[1]
	(iii	i) Fe	e	[1]
	(iv) P		[1]
	(v	') Si	İ	[1]